

Optimization in the National Airspace System

Dr. Banavar Sridhar

NASA Ames Research Center

Moffett Field, CA 94035

bsridhar@mail.arc.nasa.gov

VAMS Technical Interchange Meeting May 21, 2002

Outline

- Problem description
- Research plan
- Examples

Traffic Flow Management (TFM) Problem

Capacity

Theoretical maximum flow rate supported by the separation standard

Throughput

Rate of flow realized in operation

Efficiency

– How close is throughput to capacity?

Objective

Maximize flow rate to meet traffic demand

Characteristics of TFM

- Hierarchical command and control structure
 - 20 centers and 830 high and low altitude sectors
- Time scales
 - 1 to 6 hours (National and Center flow planning)
- Large number of aircraft (~10,000)
- Inter-center boundary connectivity
- Sector congestion
- Aggregation and decomposition

Inter-center boundary connectivity

Goal

 Develop algorithms and optimization software to deal with system-wide TFM optimization issues in both current and future systems

Research plan

- Develop algorithms and optimization software to maximize flow rate to meet traffic demand
 - Current System
 - » Spatio-temporal decomposition
 - » Use Playbook or other re-routing schemes
 - » Optimize aircraft transit times to minimize delay and meet congestion constraints
 - » Automate the process of formulating the optimization problem for different levels of aggregation and decomposition
 - Future Systems
 - » Optimal en route ATC concept
- Develop a scenario database
- Co-ordination with other VAMS concept development efforts
- Evaluate the results using FACET

Future ATM Concepts Evaluation Tool (FACET)

- Simulation tool for exploring advanced ATM concepts
 - Flexible environment for rapid prototyping of new ATM concepts
 - Interface with Host and ETMS data
 - Can be integrated with other tools of varying complexity and fidelity
- Balance between fidelity and flexibility
 - Model airspace operations at U.S. national level (~10,000 aircraft)
 - Modular architecture for flexibility
 - Software written in "C" and "Java" programming languages
 - » Easily adaptable to different computer platforms
 - » Runs on Sun, SGI, PC and Macintosh computers
 - Can be used for both off-line analysis and real-time applications

Example: Current system NO WESTGATES/RBV Playbook Plan

Impact of Rerouting and Departure Delays on ZNY

— Sector Counts (In 🕡 _							
File Edit Table							
Time	ZNY73	ZNY42	ZNY34	ZNY10			
Cap	16	15	17	17			
13:06	8	14	14	14			
13:21	14	16	11	17			
13:36	16	16	10	18			
13:51	6	12	15	13			
14:06	11	8	10	14			
14:21	12	9	8	10			
14:36	9	11	10	12			
14:51	7	11	7	16			

— Sector Counts (In /						
Cap	16	15	17	17		
13:06	7	15	19	9		
13:21	9	12	20	12		
13:36	14	13	14	15		
13:51	6	10	17	10		
14:06	11	7	14	11		
14:21	12	8	11	9		
14:36	7	10	14	9		
14:51	7	10	10	13		

— Sector Counts (In								
Eile E	<u>File Edit Table</u>							
Time	ZNY73	ZNY42	ZNY34	ZNY10				
Cap	16	15	17	17				
13:06	7	13	15	9				
13:21	8	10	13	12				
13:36	13	13	10	14				
13:51	6	7	10	10				
14:06	9	5	9	11				
14:21	10	8	6	9				
14:36	6	10	8	9				
14:51	6	9	8	13				

Nominal Sector Counts

NO_WESTGATES
Rerouting

NO_WESTGATES +
EWR and LGA Departure
Delays

EWR and LGA Delay Contours

Example: Future system Optimal en route air traffic control

- Sequential trajectory planning
- Wind-optimal routing
- Full-trajectory conflict resolution
- Periodically re-compute to mitigate disturbances
- Incorporate stochastic disturbances (Weather, SUA)

Wind-optimal route

Optimal routes

Optimal ATC video

